Cart (Loading....) | Create Account
Close category search window
 

Image hallucination with primal sketch priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Sun ; Inst. of AI & Robotics, Xi''an Jiaotong Univ., China ; Nan-Ning Zheng ; Hai Tao ; Heung-Yeung Shum

We propose a Bayesian approach to image hallucination. Given a generic low resolution image, we hallucinate a high resolution image using a set of training images. Our work is inspired by recent progress on natural image statistics that the priors of image primitives can be well represented by examples. Specifically, primal sketch priors (e.g., edges, ridges and corners) are constructed and used to enhance the quality of the hallucinated high resolution image. Moreover, a contour smoothness constraint enforces consistency of primitives in the hallucinated image by a Markov-chain based inference algorithm. A reconstruction constraint is also applied to further improve the quality of the hallucinated image. Experiments demonstrate that our approach can hallucinate high quality super-resolution images.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.