By Topic

Expectation grammars: leveraging high-level expectations for activity recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Minnen, D. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Essa, I. ; Starner, T.

Video-based recognition and prediction of a temporally extended activity can benefit from a detailed description of high-level expectations about the activity. Stochastic grammars allow for an efficient representation of such expectations and are well-suited for the specification of temporally well-ordered activities. In this paper, we extend stochastic grammars by adding event parameters, state checks, and sensitivity to an internal scene model. We present an implemented system that uses human-specified grammars to recognize a person performing the Towers of Hanoi task from a video sequence by analyzing object interaction events. Experimental results from several videos show robust recognition of the full task and its constituent sub-tasks even though no appearance models of the objects in the video are provided. These experiments include videos of the task performed with different shaped objects and with distracting and extraneous interactions.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003