By Topic

Learning object intrinsic structure for robust visual tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiang Wang ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Guangyou Xu ; Haizhou Ai

In this paper, a novel method to learn the intrinsic object structure for robust visual tracking is proposed. The basic assumption is that the parameterized object state lies on a low dimensional manifold and can be learned from training data. Based on this assumption, firstly we derived the dimensionality reduction and density estimation algorithm for unsupervised learning of object intrinsic representation, the obtained non-rigid part of object state reduces even to 2 dimensions. Secondly the dynamical model is derived and trained based on this intrinsic representation. Thirdly the learned intrinsic object structure is integrated into a particle-filter style tracker. We will show that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle-filter style tracker more robust and reliable. Experiments show that the learned tracker performs much better than existing trackers on the tracking of complex non-rigid motions such as fish twisting with self-occlusion and large inter-frame lip motion. The proposed method also has the potential to solve other type of tracking problems.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003