By Topic

Face relighting with radiance environment maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Wen ; Illinois Univ., Urbana, IL, USA ; Zicheng Liu ; Huang, T.S.

A radiance environment map pre-integrates a constant surface reflectance with the lighting environment. It has been used to generate photo-realistic rendering at interactive speed. However, one of its limitations is that each radiance environment map can only render the object, which has the same surface reflectance as what it integrates. We present a ratio-image based technique to use a radiance environment map to render diffuse objects with different surface reflectance properties. This method has the advantage that it does not require the separation of illumination from reflectance, and it is simple to implement and runs at interactive speed. In order to use this technique for human face relighting, we have developed a technique that uses spherical harmonics to approximate the radiance environment map for any given image of a face. Thus we are able to relight face images when the lighting environment rotates. Another benefit of the radiance environment map is that we can interactively modify lighting by changing the coefficients of the spherical harmonics basis. Finally we can modify the lighting condition of one person's face so that it matches the new lighting condition of a different person's face image assuming the two faces have similar skin albedos.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003