By Topic

Shape-time photography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Freeman, W.T. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Hao Zhang

We introduce a new method to describe shape relationships over time in a photograph. We acquire both range and image information in a sequence of frames using a stationary stereo camera. From the pictures taken, we compute a composite image consisting of the pixels from the surfaces closest to the camera over all the time frames. Through occlusion cues, this composite reveals 3-D relationships between the shapes at different times. We call the composite a shape-time photograph. Small errors in stereo depth measurements can create artifacts in the shape-time images. We correct most of these using a Markov network to estimate the most probable front-surface pixel, taking into account (a) the stereo depth measurements and their uncertainties, and (b) spatial continuity assumptions for the time-frame assignments of the front-surface pixels.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003