By Topic

Tracking appearances with occlusions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Wu ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Ting Yu ; Gang Hua

Occlusion is a difficult problem for appearance-based target tracking, especially when we need to track multiple targets simultaneously and maintain the target identities during tracking. To cope with the occlusion problem explicitly, this paper proposes a dynamic Bayesian network, which accommodates an extra hidden process for occlusion and stipulates the conditions on which the image observation likelihood is calculated. The statistical inference of such a hidden process can reveal the occlusion relations among different targets, which makes the tracker more robust against partial even complete occlusions. In addition, considering the fact that target appearances change with views, another generative model for multiple view representation is proposed by adding a switching variable to select from different view templates. The integration of the occlusion model and multiple view model results in a complex dynamic Bayesian network, where extra hidden processes describe the switch of targets' templates, the targets' dynamics, and the occlusions among different targets. The tracking and inferring algorithms are implemented by the sampling-based sequential Monte Carlo strategies. Our experiments show the effectiveness of the proposed probabilistic models and the algorithms.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

18-20 June 2003