By Topic

Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheung, K.M.G. ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Baker, S. ; Kanade, T.

Shape-from-silhouette (SFS), also known as visual hull (VH) construction, is a popular 3D reconstruction method, which estimates the shape of an object from multiple silhouette images. The original SFS formulation assumes that the entire silhouette images are captured either at the same time or while the object is static. This assumption is violated when the object moves or changes shape. Hence the use of SFS with moving objects has been restricted to treating each time instant sequentially and independently. Recently we have successfully extended the traditional SFS formulation to refine the shape of a rigidly moving object over time. We further extend SFS to apply to dynamic articulated objects. Given silhouettes of a moving articulated object, the process of recovering the shape and motion requires two steps: (1) correctly segmenting (points on the boundary of) the silhouettes to each articulated part of the object, (2) estimating the motion of each individual part using the segmented silhouette. In this paper, we propose an iterative algorithm to solve this simultaneous assignment and alignment problem. Once we have estimated the shape and motion of each part of the object, the articulation points between each pair of rigid parts are obtained by solving a simple motion constraint between the connected parts. To validate our algorithm, we first apply it to segment the different body parts and estimate the joint positions of a person. The acquired kinematic (shape and joint) information is then used to track the motion of the person in new video sequences.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

18-20 June 2003