By Topic

Variance-constrained filtering for uncertain stochastic systems with missing measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zidong Wang ; Dept. of Inf. Syst. & Comput., Brunel Univ., Uxbridge, UK ; Ho, D.W.C. ; Xiaohui Liu

In this note, we consider a new filtering problem for linear uncertain discrete-time stochastic systems with missing measurements. The parameter uncertainties are allowed to be norm-bounded and enter into the state matrix. The system measurements may be unavailable (i.e., missing data) at any sample time, and the probability of the occurrence of missing data is assumed to be known. The purpose of this problem is to design a linear filter such that, for all admissible parameter uncertainties and all possible incomplete observations, the error state of the filtering process is mean square bounded, and the steady-state variance of the estimation error of each state is not more than the individual prescribed upper bound. It is shown that, the addressed filtering problem can effectively be solved in terms of the solutions of a couple of algebraic Riccati-like inequalities or linear matrix inequalities. The explicit expression of the desired robust filters is parameterized, and an illustrative numerical example is provided to demonstrate the usefulness and flexibility of the proposed design approach.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 7 )