By Topic

Fault diagnosis in discrete-event systems: framework and model reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hashtrudi Zad, S. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada ; Kwong, R.H. ; Wonham, W.M.

A state-based approach for online passive fault diagnosis in systems modeled as finite-state automata is presented. In this framework, the system and the diagnoser (the fault detection system) do not have to be initialized at the same time. Furthermore, no information about the state or even the condition (failure status) of the system before the initiation of diagnosis is required. The design of the fault detection system, in the worst case, has exponential complexity. A model reduction scheme with polynomial time complexity is introduced to reduce the computational complexity of the design. Diagnosability of failures is studied, and necessary and sufficient conditions for failure diagnosability are derived.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 7 )