By Topic

A level set approach for shape-driven segmentation and tracking of the left ventricle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Paragios, N. ; Real Time Vision & Modeling Dept., Siemens Corp. Res., Princeton, NJ, USA

Knowledge-based segmentation has been explored significantly in medical imaging. Prior anatomical knowledge can be used to define constraints that can improve performance of segmentation algorithms to physically corrupted and incomplete data. In this paper, the objective is to introduce such knowledge-based constraints while preserving the ability of dealing with local deformations. Toward this end, we propose a variational level set framework that can account for global shape consistency as well as for local deformations. In order to improve performance, the problems of segmentation and tracking of the structure of interest are dealt with simultaneously by introducing the notion of time in the process and looking for a solution that satisfies that prior constraints while being consistent along consecutive frames. Promising experimental results in magnetic resonance and ultrasonic cardiac images demonstrate the potentials of our approach.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 6 )