By Topic

Automated control synthesis for an assembly line using discrete event system control theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chandra, V. ; Technol. Dept., Eastern Kentucky Univ., Richmond, KY, USA ; Zhongdong Huang ; Kumar, R.

The design of logic controllers for event-driven systems continue to rely largely on intuitive methods rather than on formal techniques. This approach results in a control code that requires extensive verification, is hard to maintain and modify, and may even fail at times. Supervisory control theory (SCT) provides a formal approach to logic control synthesis. In order to demonstrate the usefulness of the supervisory control theory in manufacturing systems, an educational test-bed that simulates an automated car assembly line has been built using LEGO® blocks. Finite state machines (FSMs) are used for modeling operations of the assembly line, and for the specifications that accomplish the task of successfully completing the assembly repeatedly. Using the technique of SCT, we derive a supervisor that enforces the specifications while offering the maximum flexibility of assembly. Subsequently a controller is extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, at most one controllable event from among the ones allowed by the supervisor. Testing to check the correctness of the control code is reduced, since the controller is guaranteed to enforce the specifications.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:33 ,  Issue: 2 )