By Topic

Reduction of carrier depletion in p/sup +/ polysilicon gates using laser thermal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chong, Y.F. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Gossmann, H.-J.L. ; Thompson, M.O. ; Pey, K.L.
more authors

A novel laser thermal processing (LTP) technique was used to fabricate p/sup +/-gated MOS capacitors with ultrathin gate oxides. It is found that the introduction of LTP prior to the gate activation anneal increases the carrier concentration at the poly-Si gate/gate oxide interface substantially, as compared to rapid thermal anneal (RTA) alone. Thus, LTP readily reduces the poly-depletion effect in p/sup +/-poly-Si gates. This is achieved without observable gate oxide degradation or boron penetration. Secondary ion mass spectrometry analyzes show that the boron concentration near the gate/gate oxide interface increases significantly after the post-LTP anneal. A possible mechanism for this increase in carrier concentration is the diffusion of boron atoms toward the gate oxide by a complex process known as explosive crystallization.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 5 )