By Topic

The statistical distribution of percolation current for soft breakdown in ultrathin gate oxide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin, W.H. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Pey, K.L. ; Dong, Z. ; Chooi, S.Y.M.
more authors

Soft breakdown in ultrathin gate oxide has been studied using constant voltage stressing. The behavior of current increments resulting from a number of soft breakdown events has been characterized by statistical distribution. It is shown that the distribution of the current increment follows Weibull distribution rather than log normal distribution. The newly established Weibull slope is shown to be independent of the stressed voltage in the range investigated between 4.5 and 5.1 V. The temperature effect study shows that the Weibull slope reduces with increasing testing temperature. Furthermore, a strong dependence of the Weibull slope on the oxide thickness has been found. These observations can be explained well by geometrical configurations of the percolation path.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 5 )