By Topic

A novel TLM-based time-domain wave propagator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ozyalcin, M.O. ; Electron. & Commun. Eng. Dept., Istanbul Tech. Univ., Turkey ; Akleman, F. ; Sevgi, L.

In this letter, a novel time-domain wave propagator, based on the transmission line matrix (TLM) technique, is introduced. A two-dimensional (2-D) TLM algorithm is modified and the sliding window technique is applied to analyze ground wave propagation characteristics. The longitudinal propagation region over the Earth's surface is covered by a finite-size TLM computation space, as if the space slides from source to observation point. A short pulse is injected into the TLM computation space as a vertical initial source distribution near the left end and is traced within an adjustable window while propagating towards the right. Perfectly matched layer (PML) blocks on the left, top and right terminate the TLM computation space to simulate the semi-open propagation region. The ground at the bottom is a perfect electrical conductor (PEC). The PML blocks absorb field components that scatter back and top. The ground wave components (i.e., the direct, ground-reflected and surface waves) are traced longitudinally towards the right. Transient propagation can be observed at any range/altitude by accumulating the time history of the desired field components and any steady-state vertical and/or horizontal field profile at a desired frequency can be extracted by applying the off-line discrete Fourier transformation (DFT).

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 7 )