Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Optimal resource allocation in multiservice CDMA networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seong-Jun Oh ; Qualcomm Inc., San Diego, CA, USA ; Danlu Zhang ; Wasserman, K.M.

This paper addresses the problem of dynamic resource allocation in a multiservice direct-sequence code-division multiple-access (DS-CDMA) wireless network supporting real-time (RT) and nonreal-time (NRT) communication services. For RT users, a simple transmission power allocation strategy is assumed that maximizes the amount of capacity available to NRT users without violating quality of service requirements of RT users. For NRT users, a joint transmission power and spreading gain (transmission rate) allocation strategy, obtained via the solution of a constrained optimization problem, is provided. The solution maximizes the aggregate NRT throughput, subject to peak transmission power constraints and the capacity constraint imposed by RT users. The optimization problem is solved in a closed form, and the resulting resource allocation strategy is simple to implement as a hybrid CDMA/time-division multiple-access strategy. Numerical results are presented showing that the optimal resource allocation strategy can offer substantial performance gains over other conventional resource allocation strategies for DS-CDMA networks.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:2 ,  Issue: 4 )