Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A novel effective surface impedance formulation for efficient broadband modeling of lossy thick strip conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aosheng Rong ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Cangellaris, A.C. ; Limin Dong

A novel effective surface impedance is proposed for accurate modeling of the frequency-dependence of field penetration inside thick strip conductors. The proposed effective surface impedance is obtained through the rigorous modeling of the frequency-dependent cross-sectional field distribution in the interior of the lossy conductor, and is a function of both frequency and position along the perimeter of the cross section of the conductor. Availability of such an effective surface impedance enables the use of a surface integral equation formulation for the electromagnetic analysis of on-chip interconnects and integrated passives structures. Such formulations are much more efficient than volumetric ones without sacrificing accuracy in the modeling of the impact of conductor internal impedance and skin effect loss on the electromagnetic response. The validity of the proposed model is demonstrated through comparisons with measured scattering parameters for on-chip interconnect structures.

Published in:

Microwave Symposium Digest, 2003 IEEE MTT-S International  (Volume:3 )

Date of Conference:

8-13 June 2003