Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Ground bounce in digital VLSI circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heydari, P. ; Dept. of Electr. & Comput. Eng., Univ. of California, Irvine, CA, USA ; Pedram, M.

This paper is concerned with the analysis and optimization of the ground bounce in digital CMOS circuits. First, an analytical method for calculating the ground bounce is presented. The proposed method relies on accurate models of the short-channel MOS device and the chip-package interface parasitics. Next the effect of ground bounce on the propagation delay and the optimum tapering factor of a multistage buffer is discussed and a mathematical relationship for total propagation delay in the presence of the ground bounce is obtained. Effect of an on-chip decoupling capacitor on the ground bounce waveform and circuit speed is analyzed next and a closed form expression for the peak value of the differential-mode component of the ground bounce in terms of the on-chip decoupling capacitor is provided. Finally, a design methodology for controlling the switching times of the output drivers to minimize the ground bounce is presented.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 2 )