By Topic

Performance analysis of scheduling and replication algorithms on Grid Datafarm architecture for high-energy physics applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Takefusa ; Ochanomizu Univ., Tokyo, Japan ; S. Matsuoka ; O. Tatebe ; Y. Morita

Data Grid is a Grid for ubiquitous access and analysis of large-scale data. Because Data Grid is in the early stages of development, the performance of its petabyte-scale models in a realistic data processing setting has not been well investigated. By enhancing our Bricks Grid simulator to accommodated Data Grid scenarios, we investigate and compare the performance of different Data Grid models. These are categorized mainly as either central or tier models; they employ various scheduling and replication strategies under realistic assumptions of job processing for CERN LHC experiments on the Grid Datafarm system. Our results show that the central model is efficient but that the tier model, with its greater resources and its speculative class of background replication policies, are quite effective and achieve higher performance, while each tier is smaller than the central model.

Published in:

High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on

Date of Conference:

22-24 June 2003