By Topic

Bacteriorhodopsin-based Langmuir-Schaefer films for solar energy capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
P. Bertoncello ; Dept. of Biophys. M&O Sci. & Technol., Genoa Univ., Italy ; D. Nicolini ; C. Paternolli ; V. Bavastrello
more authors

The photovoltaic (PV) solar cell, converting incident solar radiation directly into electrical energy, today represents the most common power source for the Earth-orbiting spacecraft, and the utilization of organic materials in this context is here explored in comparison with the present state of the art placing emphasis in organic nanotechnology. Poly[3-3'(vinylcarbazole)] (PVK) was synthesized by oxidative polymerization with ferric chloride of N-vinylcarbazole. The resulting polymer was then deposited on solid support by using the Langmuir-Schaefer (LS) technique. The pressure-area isotherm of PVK revealed the possibility of compact monolayer formation at the air-water interface. Different layers of PVK were doped with iodine vapors. The cyclic voltammetry investigation of PVK-doped I2 showed a distinctive electrochemical behavior. The photoinduced charge transfer across a donor/acceptor (D/A) hybrid interface provided an effective method to study the PV properties of the composite LS films. The results are compared with other approaches within the biological framework, such as bacteriorhodopsin (BR), and organic nanostructured materials.

Published in:

IEEE Transactions on NanoBioscience  (Volume:2 ,  Issue: 2 )