By Topic

Investigation of the applicability of dielectric relaxation properties of amino acid solutions within the resonant recognition model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pirogova, E. ; Sch. of Electr. & Comput. Eng., RMIT Univ., Melbourne, Vic., Australia ; Simon, G.P. ; Cosic, I.

The resonant recognition model (RRM) is a physicomathematical approach used to analyze the interactions of a protein and its target, using digital signal processing methods. The RRM is based on the finding that there is a significant correlation between the spectra of numerical presentation of protein sequences and their biological activities. Initially, the electron-ion interaction potential was used to represent each amino acid in the protein sequences. In this paper, the dielectric constant (ε') and dielectric loss tangent (tan δ) parameters have been determined for their possible use in the RRM. These parameters are based on the values of capacitance and conductance obtained experimentally for 20 amino acid solutions using dielectric spectroscopy for the case of the real component of dielectric permittivity; the parameter used is the dielectric increment (Δε'), the difference between dielectric constant of the amino acid solution and that of the solvent alone. The results of multiple cross-spectral analyses have shown that parameters analyzed generate in the consensus spectrum one dominant peak corresponding to the common biological activity of proteins studied, allowing the conclusion that these new parameters are suitable for use in the RRM approach.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:2 ,  Issue: 2 )