By Topic

Modeling and simulation of autonomous underwater vehicles: design and implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feijun Song ; Digital Recorders Inc., Durham, NC, USA ; An, P.E. ; Folleco, Andres

Autonomous underwater vehicles (AUVs) have many scientific, military, and commercial applications because of their potential capabilities and significant cost-performance improvements over traditional means for performing search and survey. The development of a reliable sampling platform requires a thorough system design and many costly at-sea trials during which systems specifications can be validated. Modeling and simulation provides a cost-effective measure to carry out preliminary component, system (hardware and software), and mission testing and verification, thereby reducing the number of potential failures in at-sea trials. An accurate simulation can help engineers to find hidden errors in the AUV embedded software and gain insights into the AUV operations and dynamics. This paper reviews our research work on real-time physics-based modeling and simulation for our AUVs. The modeling component includes vehicle dynamics, environment and sensor characteristics. The simulation component consists of stand-alone versus hardware-in-the-loop (HIL) implementation, for both single as well as multiple vehicles. In particular, implementation issues with regard to multitasking system resources will be addressed. The main contribution of this paper is to present the rationale for our simulation architecture and the lessons learned.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:28 ,  Issue: 2 )