By Topic

An approach to tune fuzzy controllers based on reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohui Dai ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., China ; Li, C.K. ; Rad, A.B.

This paper proposes a new approach for the tuning of fuzzy controllers parameters based on reinforcement learning. The architecture of the proposed approach comprises of a Q estimator network (QEN) and a Takagi-Sugeno type fuzzy inference system (FIS). Unlike the most of the existing fuzzy Q-learning approaches, which select an optimal action based on finite discrete actions, while the proposed controller obtain the control output directly. With the proposed architecture, the learning algorithms for all the parameters of the Q estimator network and the FIS are developed based on the temporal difference methods as well as the gradient descent algorithm. The performance of the proposed design technique is illustrated by simulation studies of a vehicle longitudinal control system.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:1 )

Date of Conference:

25-28 May 2003