By Topic

Fuzzy neural control of systems with unknown dynamic using Q-learning strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kwok, D.P. ; Hong Kong Polytechnic University, China ; Deng, Z.D. ; Li, C.K. ; Leung, T.P.
more authors

In this paper an efficient Q-learning paradigm implemented on a fuzzy CMAC network is proposed. The fuzzy CMAC network topological architecture is described. The continuous states of the system are partitioned into a number of fuzzy boxes. With the proposed fuzzy CMAC the Q-values of agents in the fired fuzzy boxes are evaluated and the control actions with maximum Q-values can be derived. The proposed hybrid adaptive and learning type of Fuzzy Neural control system based on the Q-learning is applied to the control of a pH-neutralization process.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:1 )

Date of Conference:

25-28 May 2003