Cart (Loading....) | Create Account
Close category search window
 

A self-organizing auto-associative network for the generalized physical design of microstrip patches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Banerjee, B. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA

The current work deals with the efficient physical design of patch antennas given the desired parameters like resonant frequency fr, feed point position af, substrate thickness h, relative permittivity εr, input impedance Z (=R+jX), and efficiency η. Based loosely on the analogy of perception of the human brain, a neurocomputing network has been designed, consisting of two distinct phases, namely, the training phase and the application phase. The training phase accepts as input the exhaustive set of the said parameters for patches of different shapes and sizes and determines the optimized processors (processors that adequately define the information topology of the input data set) from the exhaustive training instances using a set of information extracting self-organizing neural networks. The outputs of the training phase are n sets of processors, n being the number of different shapes of patches taken into consideration. The application phase determines the shape and size of a microstrip antenna when its desired parameters are presented to the network as the external input. This is achieved by comparing the external input with each set of processors, hence determining the cost due to each comparison. A cost matrix is thus formed which when passed through an optimization network gives the best match and hence the shape and shape determining attributes of the patch whose parameters had been passed as external input.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.