Cart (Loading....) | Create Account
Close category search window

Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tae Yong Song ; Dept. of Nucl. Med., Sungkyunkwan Univ. Sch. of Med., Seoul, South Korea ; Yong Choi ; Yong Hyun Chung ; Jin Ho Jung
more authors

The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

June 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.