By Topic

Single-event effects ground testing and on-orbit rate prediction methods: the past, present, and future

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
R. A. Reed ; NASA Goddard Space Flight Center, Greenbelt, MD, USA ; J. Kinnison ; J. C. Pickel ; S. Buchner
more authors

Over the past 27 years, or so, increased concern over single-event effects (SEEs) in spacecraft systems has resulted in research, development, and engineering activities centered around a better understanding of the space radiation environment, SEE predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level. However, as new technology has emerged, these ground test and predictive methods have certain short falls.

Published in:

IEEE Transactions on Nuclear Science  (Volume:50 ,  Issue: 3 )