Cart (Loading....) | Create Account
Close category search window
 

Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
El-Shenawee, M. ; Dept. of Electr. Eng., Arkansas Univ., Fayetteville, AR, USA

Generalized formulations are presented to analyze the electric field scattered from multiple penetrable shallow objects buried beneath two-dimensional random rough surfaces. These objects could have different materials, shapes, or orientations. In addition, their separation distance may range from a fraction of a wavelength to several wavelengths. The fast algorithm, steepest descent fast multipole method (SDFMM), is used to compute the unknown electric and magnetic surface currents on the rough ground surface and on the buried objects. Parametric investigations are presented to study the effect of the objects proximity, orientations, materials, shapes, the incident waves polarization, and the ground roughness on the scattered fields. A significant interference is observed between the objects when they are separated by less than one free space wavelength. Even when the clutter due to the rough ground is removed, the return from the second object, can be dominating causing a possible false alarm in detecting the target. The results show that the distortion in target signature significantly increases with the increase of both the proximity to a clutter item and the ground roughness.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 4 )

Date of Publication:

April 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.