By Topic

Three-dimensional biorthogonal multiresolution time-domain method and its application to electromagnetic scattering problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianyang Zhu ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; T. Dogaru ; L. Carin

A three-dimensional (3-D) multiresolution time-domain (MRTD) analysis is presented based on a biorthogonal-wavelet expansion, with application to electromagnetic-scattering problems. We employ the Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelet basis, characterized by the maximum number of vanishing moments for a given support. We utilize wavelets and scaling functions of compact support, yielding update equations involving a small number of proximate field components. A detailed analysis is presented on algorithm implementation, with example numerical results compared to data computed via the conventional finite-difference time-domain (FDTD) method. It is demonstrated that for 3-D scattering problems the CDF-based MRTD often provides significant computational savings (in computer memory and run time) relative to FDTD, while retaining numerical accuracy.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:51 ,  Issue: 5 )