By Topic

Iteration-free clustering algorithm for nonstationary image database

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yeh, C.H. ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Kuo, C.J.

Image database systems must effectively and efficiently handle and retrieve images from a large collection of images. A serious problem faced by these systems is the requirement to deal with the nonstationary database. In an image database system, image features are typically organized into an indexing structure, and updating the indexing structure involves many computations. In this paper, this difficult problem is converted into a constrained optimization problem, and the iteration-free clustering (IFC) algorithm based on the Lagrangian function, is presented for adapting the existing indexing structure for a nonstationary database. Experimental results concerning recall and precision indicate that the proposed method provides a binary tree that is almost optimal. Simulation results further demonstrate that the proposed algorithm can maintain 94% precision in seven-dimensional feature space, even when the number of new-coming images is one-half the number of images in the original database. Finally, our IFC algorithm outperforms other methods usually applied to image databases.

Published in:

Multimedia, IEEE Transactions on  (Volume:5 ,  Issue: 2 )