By Topic

INDUCTWISE: inductance-wise interconnect simulator and extractor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-Hao Chen ; Dept. of Electron. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA ; Luk, C. ; Chen, C.C.-P.

A robust, efficient, and accurate inductance extraction and simulation tool, INDUCTWISE, is developed and described in this paper. This work advances the state-of-the-art inductance extraction and simulation techniques, and has several major contributions. First, albeit the great benefits of efficiency, the recently proposed inductance matrix sparsification algorithm, the K-method of H. Ji et al. (2001), has a flaw in the stability proof for general geometry. We provide a theoretical analysis as well as a provable stable algorithm for it. Second, a robust window-selection algorithm is presented for general geometry. Third, integrated with the nodal analysis formulation, INDUCTWISE achieves exceptional performance without frequency-dependent complex operations and directly gives time-domain responses. Experimental results show that INDUCTWISE extractor and simulator have dramatic speedup compared to FastHenry and SPICE3, respectively.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 7 )