By Topic

SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xianbin Wang ; Commun. Res. Centre, Ottawa, Ont., Canada ; Tjhung, T.T. ; Yiyan Wu ; Caron, B.

This paper deals with the effects of residual timing and frequency offsets on the symbol error rate (SER) performance of an orthogonal frequency division multiplexing (OFDM) system. The synchronization of an OFDM system generally consists of a coarse frequency and timing acquisition stage and a refine stage. Due to the presence of Gaussian noise, channel distortions and implementation losses of synchronization and equalization algorithms, residual frequency and timing offsets always exist for an OFDM receiver. The residual frequency and timing offsets are proven to be Gaussian distributed, with their corresponding variances determined. The reception process of an OFDM signal with frequency and timing offsets is analyzed. A closed-form analytical result on the SER of an OFDM system with residual synchronization errors is derived. Computer simulations and analyses show that the frequency and timing offsets affect the OFDM subcarriers differently. With this observation, a new technique is proposed to minimize the SER of the OFDM systems by adjusting the distribution of transmission power among the subcarriers.

Published in:

Broadcasting, IEEE Transactions on  (Volume:49 ,  Issue: 2 )