By Topic

An orthogonal wavelet representation of multivalued images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Scheunders, P. ; Dept. of Phys., Univ. of Antwerp, Antwerpen, Belgium

A new orthogonal wavelet representation of multivalued images is presented. The idea for this representation is based on the concept of maximal gradient of multivalued images. This concept is generalized from gradients toward linear vector operators in the image plane with equal components along rows and columns. Using this generalization, the pyramidal dyadic wavelet transform algorithm using quadrature mirror filters is modified to be applied to multivalued images. This results in a representation of a single image, containing multiscale detail information from all component images involved. This representation leads to multiple applications ranging from multispectral image fusion to color and multivalued image enhancement, denoising and segmentation. In this paper, the representation is applied for fusion of images. More in particular, we introduce a scheme to merge high spatial resolution greylevel images with low spatial resolution multivalued images to improve spatial resolution of the latter while preserving spectral resolution. Two applications are studied: demosaicing of color images and merging of multispectral remote sensing images.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 6 )