Cart (Loading....) | Create Account
Close category search window

Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Roerdink, J.B.T.M. ; Inst. for Math. & Comput. Sci., Univ. of Groningen, Netherlands

We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D erosion and dilation, combined with dyadic downsampling for analysis and dyadic upsampling for synthesis. In this case the MIP operator can be interchanged with the synthesis operator. This fact is the key to an efficient multiresolution MIP algorithm, because it allows the computation of the maxima along the line of sight on a coarse level, before applying a two-dimensional synthesis operator to perform reconstruction of the projection image to a finer level. For interpolation and resampling of volume data, which is required to deal with arbitrary view directions, morphological sampling is used, an interpolation method well adapted to the nonlinear character of MIP. The structure of the resulting multiresolution rendering algorithm is very similar to wavelet splatting, the main differences being that (i) linear summation of voxel values is replaced by maximum computation, and (ii) linear wavelet filters are replaced by nonlinear morphological filters.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

June 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.