By Topic

Estimation of fractal signals from noisy measurements using wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wornell, Gregory W. ; Res. Lab. of Electron., MIT, Cambridge, MA, USA ; Oppenheim, A.V.

The role of the wavelet transformation as a whitening filter for 1/f processes is exploited to address problems of parameter and signal estimations for 1/f processes embedded in white background noise. Robust, computationally efficient, and consistent iterative parameter estimation algorithms are derived based on the method of maximum likelihood, and Cramer-Rao bounds are obtained. Included among these algorithms are optimal fractal dimension estimators for noisy data. Algorithms for obtaining Bayesian minimum-mean-square signal estimates are also derived together with an explicit formula for the resulting error. These smoothing algorithms find application in signal enhancement and restoration. The parameter estimation algorithms find application in signal enhancement and restoration. The parameter estimation algorithms, in addition to solving the spectrum estimation problem and to providing parameters for the smoothing process, are useful in problems of signal detection and classification. Results from simulations are presented to demonstrated the viability of the algorithms

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 3 )