By Topic

Fast K-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramasubramanian, V. ; Comput Syst. & Common. Group, Tata Inst. of Fundamental Res., Bombay, India ; Paliwal, Kuldip K.

Fast search algorithms are proposed and studied for vector quantization encoding using the K-dimensional (K-d) tree structure. Here, the emphasis is on the optimal design of the K -d tree for efficient nearest neighbor search in multidimensional space under a bucket-Voronoi intersection search framework. Efficient optimization criteria and procedures are proposed for designing the K-d tree, for the case when the test data distribution is available (as in vector quantization application in the form of training data) as well as for the case when the test data distribution is not available and only the Voronoi intersection information is to be used. The criteria and bucket-Voronoi intersection search procedure are studied in the context of vector quantization encoding of speech waveform. They are empirically observed to achieve constant search complexity for O(log N) tree depths and are found to be more efficient in reducing the search complexity. A geometric interpretation is given for the maximum product criterion, explaining reasons for its inefficiency with respect to the optimization criteria

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 3 )