By Topic

Sensor fusion using Dempster-Shafer theory II: static weighting and Kalman filter-like dynamic weighting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huadong Wu ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Siegel, M. ; Ablay, S.

Context sensing for context-aware HCI challenges traditional sensor fusion methods with its requirements for (1) adaptability to a constantly changing sensor suite and (2) sensing quality commensurate with human perception. We build this paper on two IMTC2002 papers, where the Dempster-Shafer "theory of evidence" was shown to be a practical approach to implementing the sensor fusion system architecture. The implementation example involved fusing video and audio sensors to find and track a meeting participant's focus-of-attention. An extended Dempster-Shafer approach, incorporating weights representative of sensor precision, was newly suggested. In the present paper we examine the weighting mechanism in more detail; especially as the key point of this paper, we further extend the weighting idea by allowing the sensor-reliability-based weights to change over time. We will show that our novel idea - in a manner resembling Kalman filtering remnance effects that allow the weights to evolve in response to the evolution of dynamic factors can improve sensor fusion accuracy as well as better handle the evolving environments in which the system operates.

Published in:

Instrumentation and Measurement Technology Conference, 2003. IMTC '03. Proceedings of the 20th IEEE  (Volume:2 )

Date of Conference:

20-22 May 2003