By Topic

On marching cubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nielson, G.M. ; Arizona State Univ., Tempe, AZ, USA

A characterization and classification of the isosurfaces of trilinear functions is presented. Based upon these results, a new algorithm for computing a triangular mesh approximation to isosurfaces for data given on a 3D rectilinear grid is presented. The original marching cubes algorithm is based upon linear interpolation along edges of the voxels. The asymptotic decider method is based upon bilinear interpolation on faces of the voxels. The algorithm of this paper carries this theme forward to using trilinear interpolation on the interior of voxels. The algorithm described here will produce a triangular mesh surface approximation to an isosurface which preserves the same connectivity/separation of vertices as given by the isosurface of trilinear interpolation.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:9 ,  Issue: 3 )