Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Codecell convexity in optimal entropy-constrained vector quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gyorgy, A. ; Dept. of Math. & Stat., Queen''s Univ., Kingston, Ont., Canada ; Linder, T.

Properties of optimal entropy-constrained vector quantizers (ECVQs) are studied for the squared-error distortion measure. It is known that restricting an ECVQ to have convex codecells may preclude its optimality for some sources with discrete distribution. We show that for sources with continuous distribution, any finite-level ECVQ can be replaced by another finite-level ECVQ with convex codecells that has equal or better performance. We generalize this result to infinite-level quantizers, and also consider the problem of existence of optimal ECVQs for continuous source distributions. In particular, we show that given any entropy constraint, there exists an ECVQ with (possibly infinitely many) convex codecells that has minimum distortion among all ECVQs satisfying the constraint. These results extend analogous statements in entropy-constrained scalar quantization. They also generalize results in entropy-constrained vector quantization that were obtained via the Lagrangian formulation and, therefore, are valid only for certain values of the entropy constraint.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 7 )