By Topic

Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chaoping Xing ; Dept. of Math., Nat. Univ. of Singapore, Anhui, China

In the present paper, we construct a class of nonlinear codes by making use of higher order derivatives of certain functions of algebraic curves. It turns out that the asymptotic bound derived from the Goppa geometry codes can be improved for the entire interval (0,1). In particular, the Tsfasman-Vladut-Zink (TVZ) bound is ameliorated for the entire interval (0,1).

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 7 )