By Topic

Parity-check density versus performance of binary linear block codes over memoryless symmetric channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sason, I. ; EPFL-Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Urbanke, R.

We derive lower bounds on the density of parity-check matrices of binary linear codes which are used over memoryless binary-input output-symmetric (MBIOS) channels. The bounds are expressed in terms of the gap between the rate of these codes for which reliable communications is achievable and the channel capacity; they are valid for every sequence of binary linear block codes if there exists a decoding algorithm under which the average bit-error probability vanishes. For every MBIOS channel, we construct a sequence of ensembles of regular low-density parity-check (LDPC) codes, so that an upper bound on the asymptotic density of their parity-check matrices scales similarly to the lower bound. The tightness of the lower bound is demonstrated for the binary erasure channel by analyzing a sequence of ensembles of right-regular LDPC codes which was introduced by Shokrollahi, and which is known to achieve the capacity of this channel. Under iterative message-passing decoding, we show that this sequence of ensembles is asymptotically optimal (in a sense to be defined in this paper), strengthening a result of Shokrollahi. Finally, we derive lower bounds on the bit-error probability and on the gap to capacity for binary linear block codes which are represented by bipartite graphs, and study their performance limitations over MBIOS channels. The latter bounds provide a quantitative measure for the number of cycles of bipartite graphs which represent good error-correction codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 7 )