Cart (Loading....) | Create Account
Close category search window

Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongwoo Park ; Basic Res. Lab., Electron. & Telecommun. Res. Inst., Taejon, South Korea ; Un-Chul Paek ; Dug Young Kim

An accurate two-dimensional (2-D) axial stress profile of a polarization-maintaining (PM) fiber was determined using high-resolution photoelastic tomography. Likewise, determining all of the stress components of the fiber and the complete expression of stress-induced anisotropy was demonstrated. For the first time, we have expressed the anisotropy of a PM fiber in terms of birefringence distribution, and we have displayed the trajectories of principal axes on the cross section of the fiber. Mode coupling between the two orthogonal polarization modes due to the asymmetric stress applying parts of the PM fiber was also analyzed using an approximated coupled mode equation.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.