By Topic

On the physical and logical topology design of large-scale optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yufeng Xin ; MCNC, Research Triangle Park, NC, USA ; Rouskas, G.N. ; Perros, H.G.

We consider the problem of designing a network of optical cross-connects (OXCs) to provide end-to-end lightpath services to large numbers of label switched routers (LSRs). We present a set of heuristic algorithms to address the combined problem of physical topology design (i.e., determine the number of OXCs required and the fiber links among them) and logical topology design (i.e., determine the routing and wavelength assignment for the lightpaths among the LSRs). Unlike previous studies which were limited to small topologies with a handful of nodes and a few tens of lightpaths, we have applied our algorithms to networks with hundreds or thousands of LSRs and with a number of lightpaths that is an order of magnitude larger than the number of LSRs. In order to characterize the performance of our algorithms, we have developed lower bounds which can be computed efficiently. We present numerical results for up to 1000 LSRs and for a wide range of system parameters such as the number of wavelengths per fiber, the number of transceivers per LSR, and the number of ports per OXC. The results indicate that it is possible to build large-scale optical networks with rich connectivity in a cost-effective manner, using relatively few but properly dimensioned OXCs.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 4 )