By Topic

Performance limits of track-to-track fusion versus centralized estimation: theory and application [sensor fusion]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Track-to-track fusion is an important part in distributed multisensor-multitarget tracking. The centralized and distributed tracking configurations were studied in (H.Chen et al., Proc. of SPIE Conf. on Signal and Data Processing of Small Targets, vol. 4048, 2000) using simulated air-to-air scenarios, and in (K.C. Chang, et al, IEEE Transact. on Aerospace and Electronic Systems, vol. 33, no. 4, pp. 1271-1276, 1997) with analytical results based on α-β filters. The current work generalizes the results in the latter to the cases with more than 2 sensors. As the number of sensors increases, the performance of the distributed tracker is shown to degrade compared with the centralized estimation even when the optimal track-to-track fusion is used. An approximate track-to-track fusion is presented and compared with the optimal track-to-track fusion with performance curves for various numbers of sensors. These performance curves can be used in designing a fusion system where certain trade-offs need to be considered. Finally, these results are compared with simulation results for a realistic air-to-air encounter scenario.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:39 ,  Issue: 2 )