Cart (Loading....) | Create Account
Close category search window
 

SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wunderlich, R.E. ; Comput. Archit. Lab., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Wenisch, T.F. ; Falsafi, B. ; Hoe, J.C.

Current software-based microarchitecture simulators are many orders of magnitude slower than the hardware they simulate. Hence, most microarchitecture design studies draw their conclusions from drastically truncated benchmark simulations that are often inaccurate and misleading. We present the sampling microarchitecture simulation (SMARTS) framework as an approach to enable fast and accurate performance measurements of full-length benchmarks. SMARTS accelerates simulation by selectively measuring in detail only an appropriate benchmark subset. SMARTS prescribes a statistically sound procedure for configuring a systematic sampling simulation run to achieve a desired quantifiable confidence in estimates. Analysis of 41 of the 45 possible SPEC2K benchmark/ input combinations show CPI and energy per instruction (EPI) can be estimated to within 3% with 99.7% confidence by measuring fewer than 50 million instructions per benchmark. In practice, inaccuracy in micro-architectural state initialization introduces an additional uncertainty which we empirically bound to ∼2% for the tested benchmarks. Our implementation of SMARTS achieves an actual average error of only 0.64% on CPI and 0.59% on EPI for the tested benchmarks, running with average speedups of 35 and 60 over detailed simulation of 8-way and 16-way out-of-order processors, respectively.

Published in:

Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on

Date of Conference:

9-11 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.