By Topic

Intensity-dependent reflectance and transmittance of semiconductor periodic structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Brzozowski, Lukasz ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Sukhovatkin, V. ; Sargent, Edward H. ; SpringThorpe, A.J.
more authors

The intensity-dependent response of nonlinear Bragg-periodic epitaxially-grown InGaAs-InAlGaAs-based optical elements is reported over a broad spectral range 1.3-1.6 μm. Large changes in the transmittance and reflectance are observed as a function of incident power. Over most of this spectral region, the nonlinear response is dominated by the saturation of absorption. In the vicinity of 1.5 μm, the optical elements exhibit fluence-dependent Bragg diffraction. For low incident powers, the indices of refraction of structures are uniform and no coherent scattering takes place. With increased incident power a Bragg grating appears, resulting in the emergence of a fluence-dependent stopband in the transmittance and reflectance spectra.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 7 )