By Topic

Path planning for planar articulated robots using configuration spaces and compliant motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sacks, E. ; Comput. Sci. Dept., Purdue Univ., West Lafayette, IN, USA

This paper presents a path-planning algorithm for an articulated planar robot with a static obstacle. The algorithm selects a robot part, finds a path to its goal configuration by systematic configuration space search, drags the entire robot along the path using compliant motion, and repeats the cycle until every robot part reaches its goal. The planner is tested on 11 000 random problems, which span dozens of robot/obstacle geometries with up to 43 moving parts and with narrow channels. It solves every problem in seconds, whereas randomized algorithms appear to fail on all of them.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:19 ,  Issue: 3 )