Cart (Loading....) | Create Account
Close category search window
 

First fully integrated 2-D array of single-photon detectors in standard CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rochas, A. ; Inst. of Microelectron. & Microsystems, Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Gosch, M. ; Serov, A. ; Besse, P.A.
more authors

A two-dimensional (2-D) array (4 by 8) of single-photon avalanche diodes integrated in an industrial complementary metal-oxide-semiconductor (CMOS) process is presented. Each pixel combines a photodiode biased above its breakdown voltage in the so-called Geiger mode, a quenching resistor, and a simple comparator. The pitch between the pixels is 75 /spl mu/m and the diameter of each pixel is 6.4 /spl mu/m. The full integration allows reducing the number of charge carriers in a Geiger pulse. The electroluminescence responsible for optical crosstalks between pixels is then reduced leading to a negligible optical crosstalk probability. Thanks to the cleanness of the fabrication process, no afterpulsing effects are noticed. At room temperature, most of the pixels exhibit a dark-count rate of about 50 Hz. The detection probability is almost identical for all 32 pixels of the array with relative variation in the range of a few percents. This letter demonstrates the feasibility of an array of single-photon detectors sensitive in the visible part of the spectrum. Besides low production costs and compactness, an undeniable benefit lies in the potential to easily modify the design to fit a specific application. Furthermore, the CMOS integration opens the way to on-chip data processing.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 7 )

Date of Publication:

July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.