By Topic

Interaction of electromagnetic waves with a magnetized nonuniform plasma slab

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tang, D.L. ; Southwestern Inst. of Phys., Chengdu, China ; Sun, A.P. ; Qiu, X.M. ; Chu, P.K.

The absorption, reflection, and transmission of electromagnetic waves by a nonuniform plasma slab immersed in an ambient uniform magnetic field of various strengths are studied in this paper. The effects of the plasma parameters and magnetic field strength on the absorbed, reflected, and transmitted power are discussed. The magnetized nonuniform plasma slab is modeled by a series of magnetized uniform plasma subslabs. The calculation results show that the effects of the magnetic field strength and density gradient on the absorbed power, as well as the frequency band of resonant absorption, are significant. A complete analysis utilizing the scattering matrix method is also used to compare the above calculation results which neglect multiple reflections between subslab interfaces. Broadband absorption of electromagnetic waves can be achieved by changing the magnetic field strength and plasma density. More than 90% of the electromagnetic wave power can be absorbed in a magnetized nonuniform plasma slab with width of 12 cm and the absorption bandwidth can range from 1 to 20 GHz with different plasma parameters and external magnetic field strengths.

Published in:

Plasma Science, IEEE Transactions on  (Volume:31 ,  Issue: 3 )