By Topic

H2 optimal linear robust sampled-data filtering design using polynomial approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Milocco, R.H. ; Grupo de Control Autom. y Sistemas, Univ. Nacional del Comahue, Neuquen, Argentina ; Muravchik, C.H.

A new frequency domain approach to robust multi-input-multi-output (MIMO) linear filter design for sampled-data systems is presented. The system and noise models are assumed to be represented by polynomial forms that are not perfectly known except that they belong to a certain set. The optimal design guarantees that the error variance is kept below an upper bound that is minimized for all admissible uncertainties. The design problem is cast in the context of H2 via the polynomial matrix representation of systems with norm bounded unstructured uncertainties. The sampled-data mix of continuous and discrete time systems is handled by means of a lifting technique; however, it does not increase the dimensionality or alter the computational cost of the solution. The setup adopted allows dealing with several filtering problems. A simple deconvolution example illustrates the procedure.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 7 )