Cart (Loading....) | Create Account
Close category search window
 

Microfluidics meets MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Verpoorte, E. ; Inst. of Microtechnology, Univ. of Neuchatel, Groningen, Netherlands ; de Rooij, N.F.

The use of planar fluidic devices for performing small-volume chemistry was first proposed by analytical chemists, who coined the term "miniaturized total chemical analysis systems" (μTAS) for this concept. More recently, the μTAS field has begun to encompass other areas of chemistry and biology. To reflect this expanded scope, the broader terms "microfluidics" and "lab-on-a-chip" are now often used in addition to μTAS. Most microfluidics researchers rely on micromachining technologies at least to some extent to produce microflow systems based on interconnected micrometer-dimensioned channels. As members of the microelectromechanical systems (MEMS) community know, however, one can do more with these techniques. It is possible to impart higher levels of functionality by making features in different materials and at different levels within a microfluidic device. Increasingly, researchers have considered how to integrate electrical or electrochemical function into chips for purposes as diverse as heating, temperature sensing, electrochemical detection, and pumping. MEMS processes applied to new materials have also resulted in new approaches for fabrication of microchannels. This review paper explores these and other developments that have emerged from the increasing interaction between the MEMS and microfluidics worlds.

Published in:

Proceedings of the IEEE  (Volume:91 ,  Issue: 6 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.